AEROSOLS AND FLY ASHES FROM FIXED-BED BIOMASS COMBUSTION characterisation, formation, precipitation

Ingwald Obernberger

Institute of Chemical Engineering Fundamentals and Plant Engineering Graz University of Technology TEL.: +43 (316) 481300; FAX: +43 (316) 4813004 E-MAIL: office@bios-bioenergy.at HOMEPAGE: http://VT.TU-GRAZ.AC.AT

- Definitions, methodology and experimental set-up
- Definition of the fuels used
- Characterisation of aerosols and coarse fly ashes formed during fixed-bed biomass combustion
 - concentration of aerosols and coarse fly ashes in the flue gas
 - particle size distribution of aerosols and coarse fly ashes
 - chemical composition of aerosols and coarse fly ashes
 - shape of aerosols and coarse fly ashes
- Formation mechanisms of aerosols
- Precipitation of aerosols and coarse fly ashes from the flue gas

Nomenclature for particle fractions used within this presentation

aerosols

the particle fraction < 1 µm

- coarse fly ash particles > 1 µm
- fly ash

total of aerosols and coarse fly ash

Performance of test runs at a pilot-scale combustion unit and a large-scale CHP plant with several biomass fuels at different operational conditions

- Continuous measurements
 - temperatures in the furnace
 - flue gas temperature at the boiler outlet
 - load of the combustion unit
 - flue gas composition (CO, O₂, NO_x)
- Non-continuous measurements
 - concentration of aerosols and fly ashes in the flue gas using a Berner-type low pressure impactor (BLPI)
 - particle size distribution of aerosols (BLPI)
- Samples taken during the test runs for subsequent analyses
 - fuel
 - aerosols and coarse fly ashes
 (sampling with the BLPI, cyclones and polycarbonate filters)

Analyses of the samples taken

fuel

- moisture content, ash content
- wet chemical analyses
 (K, Na, Mg, Si, Ca, Cl, S, Pb, Zn)

aerosols and coarse fly ashes

- wet chemical analyses of BLPI and fly ash samples (K, Na, Mg, Ca, Cl, S, Pb, Zn)
- SEM/EDX analyses of samples taken with the BLPI and with polycarbonate filters
- Determination of the particle size distribution of coarse fly ashes by sedimentation

Pilot-scale combustion unit

Large-scale CHP plant

- > moving grate
- nominal boiler capacity: 45,000 kW_{th}

Characterisation of fuels

		Softwood		Hardwood		Bark		Waste wood	
		mean	std.dev.	mean	std.dev.	mean	std.dev.	mean	std.dev.
moisture	wt.% w.b.	41.5	20.2	18.8	15.9	54.6	6.1	29.6	12.0
ash conten	<mark>t wt.% d.b.naf</mark>	0.3	0.04	0.7	0.2	5.9	1.1	4.7	0.9
Si	mg/kg d.b.	349	27	370	356	4,865	3,185	8,211	3,896
Ca	mg/kg d.b.	834	151	1,865	786	13,326	2,101	7,430	3,092
Mg	mg/kg d.b.	113	20	305	19	869	94	929	580
K	mg/kg d.b.	435	135	1,097	91	2,493	472	1,027	246
Na	mg/kg d.b.	4.6	2.1	27.9	6.4	151	127	979	507
S	mg/kg d.b.	38.0	5.7	114.7	7.6	347	43	1,015	152
CI	mg/kg d.b.	75.6	37.6	35.0	16.4	194	44	1,569	1,210
Zn	mg/kg d.b.	10.0	1.4	6.1	2.4	86.5	23.9	2,334	4,162
Pb	mg/kg d.b.	0.4	0.1	0.9	0.6	3.0	0.7	433	264

highest concentration

2nd highest concentration

std.dev. ... standard deviation; d.b. ... dry basis; w.b. ... wet basis; naf ... non ash free

PSD of coarse fly ashes and total fly ash concentrations in the flue gas at boiler outlet

Concentrations related to dry flue gas and 13 vol.% O₂

Fly ash concentrations in the flue gas vs. plant load - bark

Shape and chemical composition of coarse fly ashes

Coarse fly ash particle from the combustion of hardwood

Coarse fly ash particle from the combustion of bark

Results from EDX-analyses; data normalised to 100% not considering O₂

Chemical composition of the fly ashes

d.b. ... dry basis; sampling with silica filters, therefore no Si-analyses were performed

PSD and concentrations of aerosols in the flue gas at boiler outlet

Concentrations related to dry flue gas and 13 vol.% O₂

Mean diameter of the aerosol fraction versus aerosol emissions

Chemical composition of aerosols

Chemical composition of aerosols SEM/EDX analyses - softwood

Results from EDX-analyses; data normalised to 100% not considering O₂

Chemical composition of aerosols SEM/EDX analyses - bark

Results from EDX-analyses; data normalised to 100% not considering O₂

Chemical composition of aerosols SEM/EDX analyses – waste wood

Results from EDX-analyses (atom%); data normalised to 100% not considering O₂

Chemical composition of aerosols versus particle size – waste wood

Characteristics of coarse fly ash emissions at the boiler outlet

- > particle size: up to 200 μ m (ae.d.) with a peak at 30 70 μ m (ae.d.)
- concentration: from about 100 mg/Nm³ up to 1,000 mg/Nm³
- chemical composition: Ca, Si, Mg and K are the matrix elements

Parameters influencing fly ash formation

Parameters identified during the test runs

- ash content of the fuel
- load of the combustion unit
- operation mode (combustion air distribution over the fuel bed)

Other known parameter

- combustion technology
- furnace and boiler technology

With increasing mass of aerosols formed the peak diameter of the particle size distribution also increases.

This indicates, that if the time/temperature history of the particles is comparable, the particle number concentration always remains in the same order of magnitude.

The peak of the resulting particle size distribution may change if the timetemperature profile is changed.

e.g.: different geometries or types of furnaces and boilers

- The amount of aerosols formed as well as their chemical composition mainly depend on the chemical composition of the biomass fuel used.
- Three different processes concerning aerosol formation in fixed-bed combustion of woody biomass have been identified.

These processes indicate the location in the furnace / boiler where aerosol formation (nucleation) mainly takes place, which is of relevance regarding possibilities to influence aerosol formation.

Aerosol formation processes wood chips

Most relevant mechanism

nucleation of alkali metal salts dominating

Aerosol formation processes – bark

Particles
ased from
fuelMost relevant mechanisms
Ca-nuclei present

condensation on Ca-nuclei and nucleation of alkali metal salts as competing processes

Aerosol formation processes waste wood

	atom%
Zn	30.5
Si	7.1
Ca	3.4
S	1.1
K	1.0
0	<mark>54.9</mark>

ZnO particles sampled directly in the furnace on a hot gas Si-filter

Most relevant mechanisms nucleation of ZnO dominant alkali metals and heavy metal vapours (specially Pb) condense on ZnO-surfaces

Summary - aerosol and fly ash emissions at the boiler outlet

Results from test runs at the pilot-scale combustion unit

		aerosols	fly ashes
softwood	mg/Nm³	11 – 43	26 – 197
hardwood	mg/Nm³	31 – 107	58 — 274
bark	mg/Nm³	42 – 112	162 — 958
waste wood	mg/Nm³	62 - 2 <mark>5</mark> 1	176 - 640

All concentrations related to dry flue gas and 13 vol.% O₂.

Measurements performed at different loads between 30 and 100% of the nominal boiler capacity.

Applicability of technologies for aerosol and fly ash precipitation

		multi- cyclone	flue gas cond. unit	dry ESP	wet ESP	baghouse filters		
cut size	[µm]	~5		~0.1	~0.1	~0.1		
separation efficiency	[%]	85 - 95	50 - 90	95 – 99.9	95 <mark>– 99.9</mark>	99 <mark>– 99.9</mark>		
Chemically untreated hardwood, softwood and bark								
emissions < 150 mg/Nm³		X	X	Х	X	X		
emissions < 50 mg/Nm³			X	Х	X	X		
emissions < 20 mg/Nm³					X	X		
emissions < 10 mg/Nn					Х			
Waste wood								
emissions << 10 mg/N					X			

cond. ... condensation

For medium- to large-scale combustion units economically sound dust precipitation technologies with high efficiencies are available.

For small-scale systems no efficient low-cost system (only multi-cyclones) are available.

Investigations concerning the release behaviour of aerosol forming elements from different biomass fuels.

The investigations have shown, that a reliable prediction of aerosol formation is only possible if the release behaviour of the relevant aerosol forming elements is known.

- Advanced modelling of aerosol formation and behaviour in biomass combustion units.
- Development of an efficient and cost effective aerosol precipitation technology for small-scale applications.