Fundamental Combustion Rates of Live Fuels

Thomas H. Fletcher, Larry L. Baxter, Josh Engstrom, Jordan Butler

Overall Objective

- To better understand the combustion behavior of live fuels.
 - Why do some fuels burn differently than others?
 - Causes of flare-ups.
 - Causes for ground to crown transitions
- To add physics into forest fire modeling

Sussot's Work

- TGA data don't tell how fuels burn (rates all the same)
- If chemistry is not dominant, then shape and mass transfer may have importance

Experimental Approach

- Single Leaf Sample
- Optical/Visual Access for Observation of Ignition
- Measure the Temperature and Mass as a Function of Time
- Heating Rates Typical of Fires (~100 K/s)

Experimental Apparatus

Flat Flame Burner

- Gases Used
 - Air, H₂, CH₄, N₂
- Stoichiometry adjusted to manipulate post-flame conditions
 - T, O₂ (~10%)
- Very repeatable experiments within 2 inches of the burner surface

Gas Temperature Profiles

*127 µm diameter type K thermocouple 2" above the FFB

Infrared Images

- Optimal sample placement determined with IR camera (FLIR)
- Sharp interface between the post-flame gases and surrounding air
- Sample height of 2" is well within the hot zone of the post-flame gases

Representative California Chaparral Samples

- Chamise
- Scrub Oak (Quercus berberidifolia)
- Manzanita (Arctostap hylosdensiflora)
- Hoaryleaf Ceanothus (Ceanothus crassifolius)

Fresh Samples Wanted

- Old Samples Used for Current Experiments
- Fresh Samples Will Be Burned Within 1 Day of Arrival

Orientation Effects

- Horizontally-oriented squareshaped samples ignite first at corners
- Horizontally-oriented round-shaped samples ignite along the entire edge
- Vertically-oriented samples ignite at edge closest to the flame

Orientation Effects (Cont.) Sample Oak

Orientation Effects (Cont.) Ignition Location

Square-Shaped Manzanita

Round-Shaped Manzanita

Orientation Effects (Cont.) Orientation Effects

- Vertical Manzanita
- Horizontal Manzanita
- Vertical Chamise
- Horizontal Chamise

Ignition Temperature

- Scatter due to variations in sample shape, size, etc.
- Paper samples showed much less variation

Ignition Temperature (Cont.)

	Average Ignition Temperature (°C)	Standard Deviation (s)	Range (+/- 3*s)
Manzanita	346	61	164-528
Oak	311	74	88-534
Ceanothus	319	59	141-497
Paper	339	62	152-526

Time to Ignition

Discussion

- Samples not adjusted for thickness and weight resulting in greater scatter
- More scatter in time to ignition than ignition temperature data
- Time to ignition influenced more by heat and mass transfer effects and moisture content

Temperature Profiles of Manzanita with Varying Thickness

Conclusion

- Fire behavior influenced by sample orientation and shape
- Sample types are important in determining ignition temperature
- Heat and mass transfer effects play an important role in sample heat-up <u>time</u>
- Time to ignition significantly affected by size, shape and orientation

Future Work

- Improve technique to determine accurate ignition temperature and time to ignition
- Develop heat transfer correlations to avoid excessive computational costs
- Incorporate knowledge of leaf burning into models of bush burning

Acknowledgments

Thanks to:

- David Weise, USDA Forest Fire Research Center, Riverside, CA
- Bret Butler, USDA Forest Fire Research Center, Missoula, MT

Experimental Apparatus-Schematic

EGA Analysis-Foliage

EGA Analysis-Wood

EGA Analysis-Bark and Stems

Volatile Heat of Combustion vs. Oxygen Consumption

Extending Sussot's Work

- Burn whole samples instead of shredded samples
- Record mass loss per time
- □Calculate heat-up time to ignition
- Record ignition temperature

Compare data to Sussot's results

Current Work-Qualitative

- Experimentally represent forest fire conditions
- Video record burning samples
 - Determine where sample first ignites
 - Observe flaming characteristics with change in sample orientation and sample type

Experimental Forest Fire Conditions Cont.

Experimental Forest Fire Conditions Cont.

Work in Progress-Quantitative

- Determine ignition temperature
- Calculate heat up time to ignition
- Measure mass loss rate per time

Sussot's Work

- Heats of Combustion of Volatiles
- Evolved Gas Analysis (EGA)
 - Different Curves for foliage, wood, and bark and stems
- Correlation between oxygen consumption and volatile heat of combustion

Heats of Combustion of Volatiles and Char (from Sussot, 1982) □Overall Pyrolysis Reaction

Fuel <u>heat</u> Volatiles + Char

□ Volatile Heat of Combustion Calculation

 $DH^{\circ}_{comb}(volatiles) = DH^{\circ}_{comb}(fuel) - DH^{\circ}_{comb}(char) x fract. char$

□ <u>Table from Sussot</u>

Experimental Apparatus-Schematic

