TRANSIENT HEAT TRANSFER ANALYSIS OF THE CONTAINER/EXPLOSIVE INTERFACE William Ciro, Eric Eddings, Adel Sarofim

Inverse Heat Conduction Method (IHC)

Results: Temperature

August 2001

Results: Heat Flux

July 2001/September 2002

Results: Ignition Model for HMX*

Concluding Comments

-The heat transfer model determined that there was a contact resistance at the container/explosive interface.

-The contact resistance was consistent with the thermal expansion of the materials.

-Thermal expansion creates an air gap at steel-PBX interface, which in turn delays ignition.

-The fast-cook off experiments are in good agreement with the ignition model for HMX explosives proposed by Beckstead.

-Relatively slow cook off (~30 minutes) is much more violent than fast cook off (~3 minutes)

